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This technical note is aimed to readers with a high-school knowledge of 

mathematics and physics of electrical phenomena and signals.  

For this reason, terminology and some concepts are oversimplified and 

their mathematical explanation is not provided.  
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2. Sampling a signal in time.  Aliasing. 

3. Expansion of a periodic signal into e series of sinusoids. Amplitude and power spectra. 

4. Expansion of a random signal into a series of sinusoids. Amplitude and power spectra. 

5. The effect of sampling frequency and duration of a signal on its Fourier transform.  

6. Applications examples. Applications to the sEMG signal. 

7. The cross-spectrum of two signals. 

 

 

1. Concept and properties of the sinusoid. 
 

Consider the vector A in Fig. 1. This vector has a “magnitude” A and a direction or angle, or 

“phase”, φ.   This vector also has two components in the x-y plane: they are  Ax=A cos φ  

along x and  Ay=A sin φ along y.  The “magnitude”, or “modulus”,  of the vector is given by 

Pythagoras' Theorem as 𝐴 = √𝐴𝑥
2 +  𝐴𝑦

2   while its phase is the angle whose tangent is  

sin φ/cos φ , that is φ= arctg(Ay/Ax). 

Furthermore consider that an angle can be measured in either degrees or radians where  a 

degree is a full-turn/360 and a radian is the angle cutting an arc equal to the circumference’s 

radius. Since a circumference contains 2π radii it follows that  1 rad = 360° / 2π = 57.3° and 

the following proportion holds: 2π : 360° = rad : deg  where rad is an angle expressed in 

radians and deg is the same angle expressed in degrees. Given either measure the other can be 

computed.  In signal processing angles are usually measured in radians. 

http://www.robertomerletti.it/
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Consider now that the vector  A is rotating counterclockwise so that its magnitude A remains 

the same but φ increases proportionally to time so that it takes T seconds to complete a full 

turn, that is 360o or 2π radians. That means that the vector will make f  full revolutions per 

second and therefore f=1/T and T=1/f.  The quantity f is the frequency of rotation and is 

measured in cycles/s or Hertz (Hz). For example. If T =0.1 s it will be f= 10 Hz and if 

f=1000Hz then T= 1ms. The quantity T, expressed in seconds, is called  the “period” of the 

sinusoid.  It follows that the angular velocity of φ is  ω = 2πf = 2π/T where  ω is the  angular 

velocity or “angular frequency”, expressed in radians/s (instead of cycles/s) .  

For example, if A makes 3 full revolutions per second il will be f=3Hz and ω=6π radians/s 

and the period will be 1/3 of a second. The “velocity” of φ, expressed in rad/s is ω and 

therefore it will be  φ =  ω t = 2πtf= 2πt/T.   The following proportions hold : φ : 360o = t: T if 

φ is expressed in degrees, and  φ : 2π = t: T , if φ is expressed in radians, as more usual. 

 

Consider now how the two components of the vector A evolve as functions of  the angle φ, 

that is as functions of time since  φ =  ω t, where  ω = 2πf. 

The plot of Ay = A sin φ  = A sin 2πf t  = A sin 2πt/T is a “sinusoid” or “sine wave”  and  is 

depicted in green in Fig. 1.  

The plot of Ax = A cos φ = A cos 2πf t = A cos 2πt/T is a “cosinusoid” or “cosine wave”  and  

is depicted in red in Fig. 1. 

Observe that a cosinusoid is a sinusoid shifted  left by a quarter of a period. Also observe that 

the values of a sinusoid or of a cosinusoid are comprised between -A and +A since sin φ and  

cos φ are comprised  between -1 and +1.  

 

The sinusoid is a very important mathematical function because of its many properties. For 

example, the derivative  (that is the function describing the slope or rate of change) of a 

sinusoid is a cosinusoid and viceversa, with a negative sign.  

 

The electrical power that  would be transformed in heat by a sinusoidal voltage applied to a 

1 Ω resistor is called the “power” of the sinusoid and is given by A2/2.  The square root of 

this value is called the root mean square value of the sinusoid (RMS) and is A/√2= 0.707A. 

Note that the RMS value is related to the amplitude only and not to the frequency of the 

sinusoid.  The concept of RMS applies to any waveform but the RMS = 0.707A applies to 

sinusoids only. 
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2. Sampling  a signal in time. Aliasing. 
 

Consider the signal y = g(t) depicted with a dashed black line in Fig. 2a. This signal is 

continuous in time and cannot be processed by a computer. Computers can only process 

numbers so this signal must be translated into a sequence of numbers. In order to do this the 

signal is “sampled” and a sequence of “samples” equally spaced in time is generated.  This 

sequence is represented by the vertical lines in Fig 2a. Each sample has a numerical value 

(the length of each vertical bar) which is translated into a binary number by an analog-to-

digital converter (ADC). This number can be processed by a computer. Of course, we miss 

information about what the signal is doing in between samples. However, if the samples are 

“sufficiently close” we can reconstruct the missing information by “linear interpolation”, that 

is by connecting the sampled values by segments or arcs. In the case of Fig. 2a this procedure 

produces a new signal that is “sufficiently close” to the original signal because the straight 

lines (not indicated in Fig. 2a) substantially overlap with the original signal with a negligible 

error. This is not the case if the interval between samples is twice that used in Fig. 2a, as 

shown in Fig. 2b where the sample frequency is half (one every other sample is taken). 

 

Fig. 1. Generation of a sinusoid and a cosinusoid as components along the x and y axis (Ax 

and Ay) of a rotating vector A. 
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The number of samples taken every second is the sampling frequency fs (or  “sampling rate” 

measured in samples/s or, less correctly, in Hz). The time interval between adjacent samples 

is the sampling interval ts (measured in seconds), and is ts = 1/fs. In Fig. 2a the sequence of 

samples provides an “acceptable representation” of the original signal and further processing 

can be performed correctly. For example, if fs1 =2000 Hz, ts1 = 1/2000 = 0.5 ms. 

 

Fig. 2b depicts the same signal (dashed black line) sampled at half the frequency. For 

example, fs2 = fs1 /2 = 1000 Hz and  ts2 = 2 ts1  = 1/1000 = 1 ms. The red lines connecting the 

sample values indicate that the sampled signal does not represent well the original signal and 

the “sampling” error is quite large. Processing this sampled signal would lead to incorrect 

results because of incorrect choice of the sampling frequency.  

So, how do we know how to properly choose the sampling frequency of a continuous signal ? 

The answer to this important question will be provided in section 5. 

Since we do not know what the signal is doing in between two samples it is possible that the 

sequence of samples might represent two or more signals having the same samples but 

 

Fig. 2. Sampling a signal in time. a) the continuous signal represented by the dashed black 

line is sampled at the frequency fs1  (for example 2000 Hz) with a sampling interval ts1 (for 

example 0.5 ms) for an “epoch” of duration tep. We can see that the missing information in 

between samples does not cause a great error because the samples capture the features of the 

signal and its waveshape can be reconstructed faithfully by connecting the samples with 

straight lines or arcs (interpolation). 

b) the same signal depicted in a) is sampled at half the sampling frequency used in a). We 

can see that the missing information in between samples causes a great error because the 

samples are too far apart to capture the features of the signal and its waveshape cannot be 

reconstructed faithfully by connecting the samples with straight lines (red line). 
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different behavior in between samples. This is shown in Fig 3 where the sequence of samples 

(vertical black lines) applies to both sinusoid 1 (blue) and sinusoid 2 (red). Sinusoid 2 is 

called an “alias” of sinusoid 1 and this phenomenon is called “aliasing”.  

We are taking 8 samples in 50 ms so the sampling frequency is 160 Hz and the sampling 

interval is 6.25 ms. This is a proper choice of sample frequency for sinusoid 1 whose 

frequency is 20 Hz but a wrong choice for sinusoid 2 whose frequency is 180 Hz. Note that 

sinusoid 1 is sampled properly and can be reasonably well reconstructed  (interpolated) by 

curve 3 (connecting the samples) while sinusoid 2 is not at all recovered by interpolation 

between samples. In other words, sinusoid 2, which has a frequency of 180 Hz, after being 

improperly sampled, as in the example indicated in Fig. 3, appears as a sinusoid having 

frequency of 20 Hz. 

 

When we have  only the sequence of samples, how do we know if it is coming from sinusoid 

1 and not from its alias sinusoid 2?  The answer is that we cannot distinguish  the two cases. 

Therefore, if we are interested in sinusoid 1 we must be sure that sinusoid 2 is not present, 

while if we are interested in sinusoid 2 (and 1) we must substantially increase the sampling 

frequency.  In case we were interested in sinusoid 2 (in absence of sinusoid 1) this sampling 

would give us curve 3 which, in this case, would be totally incorrect.  This issue will be 

further discussed in section 5. 

 

 

 

 

Fig. 3. Sampling frequency must be chosen after knowing the frequency of the 

signals we wish to sample. The sequence of samples indicated by the vertical black 

bars could be generated either by sampling sinusoid 1 or sinusoid 2. In BOTH cases 

the resulting interpolated signal would be curve 3 which is a good representation of 

sinusoid 1 but a  totally incorrect representation of sinusoid 2.  
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3. Expansion of a periodic signal into e series of sinusoids. Amplitude 

and power spectra. 
 

A periodic signal is a signal that repeats identically every T seconds, with a frequency f =1/T 

cycles/s or Hz, such as the one indicated in red in Fig. 3a where two cycles, or periods, of this 

signal s(t) are depicted. The signal has a period of 0.1 s and therefore a frequency of 10 Hz or 

10 cycles/s. A sinusoid or a cosinusoid are special types of periodic signal. 

 

A fundamental property of any periodic signal is that it can be “decomposed” or (and better) 

“expanded” into the sum of a number of sinusoids of proper amplitude and phase whose sum 

produces the original signal. This expansion of a signal into a sum of sinusoids is called the 

Fourier series expansion and the sinusoids are called “harmonics” of the signal. As indicated 

in Fig. 4a, the first harmonic has the same frequency f of the signal, the second has frequency 

double ( frequency 2f  and period T/2), the third has frequency 3f and period T/3 , and so on. 

As a consequence,  the spacing between adjacent harmonics is f. The number of harmonics 

necessary to reconstruct the original signal may range from very few to thousands, depending 

on the shape  (or “waveform”) of the signal. These harmonics are mathematical building 

blocks and do not mean that the device or organ producing the signal actually produced them 

and added them up to create the signal. 

 

Consider  now  Fig. 4a, look at it from the right and draw a  green vertical bar indicating the 

amplitude of each harmonic at the corresponding frequency (A1 at 10 Hz, A2 at 20Hz, and so 

on).  We obtain a plot of amplitude of the harmonics versus their frequency.  This plot is 

called the “amplitude spectrum” of the signal or “magnitude of the Fourier expansion” of the 

signal.  An example is given in Fig. 4b for another signal having 8 harmonics (and there are 

no further harmonics). Each vertical bar represents the amplitude of one harmonic. 

 

A “phase spectrum” (or “phase angle of the Fourier expansion of the signal”) is obtained in 

the same way but is not reported in Fig.4. The amplitude and phase spectra  are the “direct 

Fourier expansion” of the signal. They provide the representation of the signal “in the 

frequency domain” and contain the same information contained in the original signal (red 

curve in Fig.4a). They allow its perfect reconstruction. The reconstruction of the signal 

starting from its amplitude and phase spectra is called the “inverse Fourier transform” of the 

spectrum. It is important to understand and underline that these harmonics  (or “spectral 
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lines”) are mathematical entities and, in general, do not represent (and are not generated by) 

any physiological mechanism or phenomena. This process can be applied to any signal 

(voice, music, earthquake waves, sounds produced by whales or ship propellers, activity of 

sunspots, blood pressure wave,  EEG, ECG, EMG, etc). Although the harmonics are NOT 

individually generated by the physical or physiological source of the signal they are 

extremely useful in the process of “understanding” the signal and “processing” it to extract 

physical or physiological information. as shown in section 6. 

 

Note that. if the  original signal is sampled, its harmonics will be sampled as well at the same 

sapling frequency. Also note that  an  amplitude spectrum (Fig. 4b) could be defined by the 

dashed green line and the harmonics could be considered as “samples” of the spectrum. 

 

 

Fig.4. Fourier series expansion. A sampled periodic signal with period of T seconds  (0.1s in the 

example, red line) can be decomposed into the sum of sinusoids called harmonics (4 in panel a)) 

whose frequencies are multiple of 1/T (10Hz in this example) as described in a). The amplitude 

spectrum is obtained as indicated in green in a). b) Amplitude spectrum of another signal having 

9 harmonics. Note that these harmonics are mathematical entities and, in general, do not 

represent (and are not generated by) any physiological mechanism, organ or phenomena. See 

text for further explanation. 
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Note that if the period T of the signal is longer, with no change of signal waveshape,  the 

harmonics will be closer to each other (because they are spaced by 1/T Hz) and the spectrum 

will be narrower.  If the signal is irregular and with fast changes, the harmonics of higher 

frequency will have greater amplitudes than  those of lower frequency.  

 

The power of a sinusoid  having peak value A was defined in section 1 as A2/2. The same 

concept applies to the harmonics of a generic signal. The power of a signal is the sum of the 

powers of the individual harmonics.  However, the RMS of a signal is not the sum of the 

RMS values of its individual harmonics because the square root of a sum is not the sum of 

the square roots of the addenda. If the original signal is sampled,  all its harmonics are 

sampled at the same time instants.  Fig. 5 shows the amplitude and powers spectra of two 

sinusoids having RMS values V1RMS and V2RMS respectively of 10 and 5 V and frequencies 

respectively of 25 Hz and 50 Hz. Note the amplitude spectrum showing two lines of 

amplitude 10 V and 5 V at 25 Hz and 50 Hz. Note the power spectrum  showing two lines of 

100 V2 and 25 V2 at the same frequencies. If taken simultaneously, the two pairs of lines 

represent the amplitude and power spectra of the sum of the two sinusoids. 

Since the time and the frequency representations of a signal are perfectly equivalent, and one 

can be obtained from the other, what are then the reasons for a second representation?  This 

question will be answered in section 5. 

 

Fig. 5. Example of two sinusoids depicted versus time and in the “frequency domain”.  The 

amplitude and power spectra are shown. The sinusoids have the same starting phase. The phase 

spectrum (not shown) shows two values of zero  degrees at 25 Hz and 50 Hz.  Note that sinusoid 

V2 has amplitude that is ½  of that of V1 and power that is ¼ of that of V1. 
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4. Expansion of a random signal into a series of sinusoids.  

Amplitude and power spectra. 
 

Most bioelectric signal (including sEMG and EEG) are not periodic and appear to be random 

(stochastic),  such as Signa l  and Signal 2 in Fig. 6. However, their analysis in the “frequency 

domain” (or frequency analysis” or “spectral analysis”) can be performed with a 

mathematical  “trick” consisting in taking a segment of the signal called “epoch” or “time 

window” of duration T seconds and assuming that it repeats periodically with period T. 

Although this is not true, this “hypothesis” allows a correct definition of the harmonics and of 

the signal amplitude and power spectra as outlined in Section 3 for a periodic signal.   

Fig. 6 shows an example concerning the frequency analysis of two  different random signals, 

Signal 1 and Signal 2. These two signals are sampled synchronously (samples not indicated 

for clarity), have similar amplitude (and therefore similar RMS values), but are obviously 

different. Signal 2 is “slower” and Signal 1 is “faster”. How can we quantify this difference? 

 

 

Fig. 6. Example of two random signals having similar amplitude but different power 

spectra. The abscissa of the centroid of the power spectrum (mean frequency) is an 

indicator of  the spectral bandwidth of the signal.  a) one epoch of duration T of Signal 1,  

b)  one estimate of the power spectrum of Signal 1 with indication of the harmonics 

spaced by 1/T Hz. c) One epoch of duration T of Signal 2,  d) one estimate of the power 

spectrum of Signal 2 with indication of the harmonics spaced by 1/T Hz. The harmonics 

of the two spectra have the same frequencies but different amplitudes. The frequency fmax 

is the frequency of the highest harmonic of each spectrum. 
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The answer comes from the power spectra plots of the two signals (right panels), which are 

quite different: one is narrower and the other is wider. The harmonics, indicated by the blue 

dotted vertical lines and separated by 1/T Hz  in both cases, extend to different frequencies 

fmax1 and fmax2 and more power of Signal 1 is associated to higher frequency harmonics than 

Signal 2. This observation can be quantified in many ways. The most common is by means of 

the value of the centroid line (center of gravity or barycenter) of the power spectrum of each 

signal. This is called mean frequency, it is a weighed mean, and should not be misunderstood 

as the mean of the frequencies from 0 to fmax (which is fmax/2). If we cut out the power 

spectrum of a signal on a piece  of cardboard (red shapes in panels b) and d) ) and we balance 

it on a blade indicated by the red dashed line, the  piece of cardboard will be in equilibrium. 

This single frequency value (centroid frequency or barycentre frequency) will give us some 

information about the width of the spectrum. This is not the only indicator used and other 

features provide additional  quantitative information about the difference between two signals 

and their spectra. More detailed explanation and examples of application are provided in 

slides 41 to 52 in  www.robertomerletti.it/en/emg/material/teaching/module7. 

 

Spectra and their mean frequencies (or other features) are similar but not identical when 

computed from subsequent epochs of a signal. Since the signal is random, also its features 

have random values when their estimation is repeated on subsequent epochs. They are 

different, in subsequent epochs, even if the signal is “stationary”. For this reason they are 

called “estimates” and fluctuate around a mean value that is called the “expected” value. This 

is a  critical point when features are estimated  from a “non stationary” signal that is changing 

the expected value of its features in time,  such as the sEMG during dynamic contractions. 

This fact requires a careful choice of the epoch duration. Epoch duration (T) must be long 

enough to have a reasonable frequency resolution (1/T Hz)  and be short enough so that the 

signal is reasonably stationary and is not significantly changing its RMS and spectrum during 

each of the subsequent epochs. In the case of sEMG, proper choice  of epoch duration is a 

compromise that depends on the rate of force change or velocity of shortening or lengthening 

of the muscle. This requires some experience.  

 

Epoch durations usually range from 1/8 s  (0.125 s) to 2 s and therefore result in a spacing 

between harmonics (Δf) ranging from, 8 Hz to 0.5 Hz. The first value (8 Hz based on epochs 

of 0.125 s duration)) is barely acceptable for sEMG because a spectrum ranging from 10 Hz 

to 400 Hz would be defined by only 48 harmonics. The second value (0.5 Hz, based on 
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epochs of 2 s) would lead to 800 harmonics in the frequency range of 0 to 400 Hz. This 

provides a very good description of one spectrum obtained from one epoch. Nevertheless, the 

spectra obtained from subsequent epochs would still be different from each other and spectral 

averaging would be necessary (if the signal is stationary) to approximate the expected 

spectrum. This is indicated in Fig. 7 that shows a 4-s long recording divided into two epochs 

of 2 s each. Two spectra are obtained, from epoch 1 and epoch 2, with frequency resolution 

Δf = 0.5 Hz (harmonics are not indicated for clarity). If the two spectra are averaged, a better 

estimate of the desired and unknown “expected” spectrum is obtained. If many spectra, 

obtained from subsequent epochs, are averaged, the expected spectrum indicated by the red 

dashed line is progressively approximated.  

 

 

To improve this approximation, the “trick” of using overlapping epochs is often used. Fig. 7 

shows that a third  2-s epoch can be identified from  the end of second 1 to the beginning of 

 
Fig. 7. Example of a 4-s recording of a sEMG signal and of “Welch periodogram”.  

Two epochs of 2 s each are defined and two estimates of the signal’s power spectrum are 

obtained.  Spacing between harmonics  (not shown) is 0.5 Hz. A third epoch with 50% 

overlap with epoch 1 and epoch 2 is shown. The average of the two (or three) power 

spectra (not shown) provides a better approximation of the expected spectra (dashed red 

lines in panel b). As the number N of spectra being averaged becomes large the average 

spectrum approaches the expected (true) spectrum of the signal. This implies the 

availability of long recordings of a stationary signal. This is the reason why spectral 

analysis of dynamic sEMG signals must be performed with caution and require expertise 

and competence. 
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second 3 . Although this epoch overlaps with the others it can be used to obtain a third 

spectral estimate to be averaged with the other two and reduce the standard deviation of the 

estimates. In this case overlapping  between epochs is 50% but other degrees of overlapping 

are often used. This procedure is called the “Welch periodogram” and is often used in sEMG 

analysis when the sEMG signal is stationary over at least a few seconds, such as in case of 

sustained isometric constant force contraction of submaximal force.  Fig. 8 shows a 3-s 

recording of a random signal that is subdivided in 12 epochs of 0.25 s each. Only 4 non 

overlapping epochs are shown in the figure. The 12 epochs lead to 12 spectra that are 

averaged. In case of 50% overlapping 22 epochs and 22 spectra could be obtained.  If the 

signal is stationary during these 3 s, the average of these 22 spectra is a good approximation 

of the expected  (true) spectrum. 

 

Another spectral estimation procedure is referred to as “zero padding”. This is again a 

mathematical “trick”  to reduce the spacing between harmonics by a particular type of 

interpolation.  Consider Signal 1 in Fig. 9a and its spectrum defined by the blue harmonics   

 

Fig. 8. Example of a 3-s recording of a random signal divided into 12 non-overlapping 

epochs of ¼ s each. Epochs 3 to 6 are shown. Twelve power spectra can be obtained 

and averaged.  If epochs with 50% overlapping had been chosen, 22 spectra would 

have been obtained, Their average would have provided a better estimate of the power 

spectrum (Welch periodogram).  The Welch method can be associated to the “zero 

padding “ technique described below and in Fig. 9. It requires a stationary signal, that 

shows no trends in amplitude and frequency characteristics, otherwise the spectra 

cannot be averaged. 
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in panel b). The Signal epoch duration is T1 = 0.25 s and therefore, the blue harmonics are 

spaced by 4 Hz. Now consider adding null samples (padding with zero value samples)  to the 

signal up to 0.5 s to generate an epoch of T2 = 0.5 s (Signal 2, which is zero for half of its 

duration). The harmonics of Signal 2 are now spaced by 2 Hz (red and blue harmonics in 

panel b).  Apparently we have increased the frequency resolution of the spectrum but this is 

not really the case since the information content of the two spectra is the same and we have 

just performed a special type of interpolation in the frequency domain. Nevertheless, this is a 

useful procedure adopted when epochs are short  either because only a short signal recording 

is available or because the signal is not stationary and short epochs must be used. See also 

section 5. 

 

 

It is important to underline that the harmonics of a signal are mathematical objects providing 

a different representation of a signal that is often very useful for the interpretation of the 

signal nature and its changes. Harmonics are not produced by physiological processes. They 

provide a different way of describing and quantifying such processes, like a description in a 

different language. 

 

Fig. 9. Example of the “zero padding technique” to obtain a higher number of 

harmonics through a special interpolation technique in the frequency domain. This 

method can be used when short signal epochs are extracted from a non stationary 

signal, such as a sEMG signal during dynamic contractions. This approach does not add 

new information but allows a better estimate of spectral features because of the greater 

number of harmonics more closely spaced. The workings of this technique are not 

intuitive but are fully mathematically justified. 
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5. The effect of sampling frequency and duration of a signal on its 

Fourier transform.  

 
The Nyquist-Shannon theorem states that a sinusoid can be reconstructed if more than two 

samples are taken for each period. For further information see: 

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem  and  

https://www.youtube.com/watch?v=FcXZ28BX-xE 

This does not mean that the reconstruction is trivial. It actually requires sophisticated 

procedures much more complex than linear interpolation.  Fig. 10 shows the results of 

sampling, at 100 samples/s, two sinusoids at 22 Hz (4.54 samples/period) and at 27 Hz 

(3.70 samples/period). A 25 Hz sinusoid sampled at 100 samples/s  (4 samples per period) 

would result in a triangular wave but could still be reconstructed as a sinewave.   

 

 

 

Fig. 10. Two sinusoids  of peak values equal to 1 ( at 22 nd 27 Hz) are sampled at 100 

Hz. The samples are connected by interpolating straight lines. Despite the fact that the 

Nyquist-Shannon theorem is satisfied, the  original signals are poorly approximated but 

could be recovered with proper mathematical tools. Since these tools are complex, a 

signal is usually sampled at 5-10 times the prescribed Nyquist rate, that is at 5-10 times 

the frequency of its highest harmonic. 

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
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The highest harmonic of the sEMG signal is around 400 Hz (occasionally up to 500 Hz) as 

indicated in Fig. 7.  The sEMG should therefore be sampled at more than 800-1000 samples/s 

in order to reconstruct (with the proper technique) all its harmonics and, therefore, the entire 

signal without altering it. Higher “harmonics” (due to noise or other disturbing signals) above 

400-500 Hz should be eliminated, before sampling the signal, by analog filtering.   Since the 

contribution of the harmonics of the sEMG in the range of 350-500 Hz is small (Fig. 7) a 

compromise sampling frequency near 2000 Hz  is usually adopted. A sampling frequency of 

2048 samples/s is commonly adopted because the algorithm for the computation of the 

Fourier transform is much faster if the sampling  frequency is a power of 2 (2n) and 2048=211.  

With this choice the commonly used epochs of 0.250s, 0.50 s, 1.00 s, 2.00 s, have a number 

of samples that are powers of 2 (512, 1024, 2048, 4096 respectively).  However, other 

sampling frequencies near or above 2000 samples/s are acceptable and used. 

 

As indicated in Fig. 4 and in previous sections, the period of the first harmonic of a random 

signal equals the duration T of the signal epoch selected for the computation of the Fourier 

transform. Therefore, the frequency of the first harmonic is 1/T Hz and the spacing between 

harmonics is also 1/T Hz where T is the chosen epoch duration.  As a consequence, the 

greater the epoch duration the greater the number of harmonics describing the signal and the 

better the estimate of the amplitude and power spectra of the signal. Note that the  often used 

“zero padding” technique described above  to increase the number of harmonics provides 

only an interpolation and does not provide additional information. 

 

Since the sEMG has harmonics up to about 400 Hz (occasionally up to 450-500 Hz) it is 

usually a good idea to have at least 100 harmonics which means a spacing between 

harmonics of <4 Hz and an epoch duration of at least 0.25 s. This may be too long in fast 

dynamic contractions. Averaging of spectra is not possible in this case, because the signal and 

its spectrum are changing too much and too fast in time and a compromise may be necessary. 

Other techniques (such as “time-frequency analysis” or “wavelet analysis”) may solve this 

problem but they are complex and are not discussed in this note. Other issues related to 

sampling a signal in space are addressed in similar ways but are not discussed in this note. 

 

If the signal has a DC component (that is the mean value not zero) this component appears as 

an “harmonic of order 0” for f=0 Hz in the amplitude or power spectra Since, in general, this 

value is of no interest and may alter estimates of frequency parameters (such as the mean 



16 
 

frequency), the mean value of the signal is subtracted from the signal before any further 

analysis is performed. In this way the 0th harmonic at f=0 has zero amplitude. 

 

6. Application examples. Applications  to the sEMG signal. 
 

Fig. 11 shows a signal made up of three sinusoids (with respective frequencies of 80 Hz, 160 

Hz and 200 Hz) and a random signal. These four contributions have similar peak-to peak 

amplitudes (panels a), b), c), d) ). Their sum produces the signal depicted in panel e).  

It is virtually impossible to visually “understand” the nature and structure of the signal by 

looking at it in panel e). However, the power spectrum of the sum signal (in panel e) ) clearly 

shows that the signal is composed of three sinusoids plus noise, it indicates the frequencies of 

the sinusoids and the presence of noise (panel f) ). The noise has many small harmonics (not 

indicated) distributed on a wide frequency range. 

 

 

Fig. 11. The summation of the sinusoids and noise indicated in a), b) , c) and d) produce the 

signal depicted in e) where  the original components can no longer be visually recognized. 

However, the power spectrum of the signal e), depicted in f) , clearly shows the three 

sinusoids and the noise that make up the signal in e). 
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Fig. 12 shows the power spectrum of a sEMG signal. The black plot depicts the power 

spectrum obtained by squaring the amplitude of the Fourier transform obtained from a single 

epoch. Since the signal is random-like also the amplitudes of the harmonics are random and 

many spectra, obtained from many signal epochs of a stationary signal, must be averaged to 

obtain an average spectrum providing a good estimate of the true spectrum indicated in red. 

This spectrum shows a very large harmonic at 50 Hz presumably due to power line 

interference and not visually detectable by looking at the signal in time (not shown). This 

“spectral line” can be removed by  a “notch filter” or by other techniques (not described in 

this note) to obtain a signal free from this interference.  

 

The two examples given in Fig. 11 and Fig. 12 show the power of the Fourier analysis in 

signal processing and “understanding”. A third example specifically focuses on a technique 

frequently used to provide an  index of “myoelectric manifestations of muscle fatigue”. 

As a muscle “fatigues” the propagation velocity of action potentials along its fibers decreases 

making the motor unit action potentials  (MUAP) wider. The sum of the MUAPs is the 

sEMG detected by the surface electrodes. The global effect on the sEMG is a  progressive 

“slowing” of the signal and therefore a “narrowing”  or “compression” or “scaling” of its 

 

Fig. 12. Black line: power spectrum of one epoch of a random-like signal (sEMG) 

containing a marked spectral line at 50 Hz likely due to power line interference.  Only a 

few harmonics are indicated for clarity. Red line: power spectrum resulting from the 

averaging of many power spectra, each computed on a single epoch, and approximating 

the true spectrum of the signal. A few harmonics of the averaged spectrum are indicated 

in red. The spectral line at 50 Hz, present in all the averaged spectra, is very evident.  

Many methods are available to reduce or eliminate  such interference., when detected.   
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amplitude and power spectra, as indicated in Fig. 6 and Fig. 13.  Fig. 13 shows a long record 

of one sEMG channel subdivided into N epochs of equal durations, the power spectra of  

epochs 1 (red) and N (blue), and the mean spectral frequencies (MNF or centroid lines) of  

the first and last spectra. 

Since each epoch is 0.5 s long, the spectral harmonics (not indicated for clarity) will be 

separated by 2 Hz in all spectra. Their amplitudes will change (not their frequencies) showing 

increased power of the lower harmonics and decreased power of the higher harmonics, 

leading to a decrease of MNF.  Since the sEMG is slowly changing its properties in time is 

said to be “quasi-stationary” and is assumed to be stationary during each epoch. 

 

 

The decrease of MNF during a sustained isometric, constant force contraction may be 

somewhat irregular from epoch to epoch leading to the situation depicted in Fig. 14 where a 

 

Fig. 13.  A long recording (e.g. 60 s) of non stationary sEMG is divided into N epochs of a few 

seconds each and the power spectrum is calculated for each epoch. For clarity, only epoch 1 and N 

are shown with the relative power spectra PS1 and PSN. The mean frequency (MNF)  f1 to fN of 

each spectrum is calculated.  If, for example , fN is 0.7 f1  (that is 70% of f1) this means that MNF 

decreased by 30%  during the contraction. This decrement can be used as a quantitative index of 

myoelectric manifestation of muscle fatigue. 
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regression line is fitted to the experimental points (one per epoch) describing the variations of 

MNF versus time.  The slope of this regression line is often taken as an index of myoelectric 

manifestations of muscle fatigue. 

 

Fig. 15 shows the same concept with a three-dimensional plot showing the evolution of the 

sEMG power spectrum during an isometric constant force contraction of a biceps brachii 

sustained for 90 s at 60% of its maximal voluntary contraction (MVC). More information 

about myoelectric manifestations of muscle fatigue and about the “fatigue plot” showing the 

time course of other sEMG features can be found in module 7 at 

https://www.robertomerletti.it/en/emg/material/teaching/.   

Caution and competence must be used in the interpretation of these plots since the concept of 

myoelectric manifestations of muscle fatigue is very different from the concept of mechanical 

manifestations of muscle fatigue. Myoelectric manifestations of muscle fatigue are due to 

electrophysiological changes taking place in the sarcolemma. They are evident even when 

 

Fig. 14.  Myoelectric manifestations of muscle fatigue. a) A “quasi-stationary” (with slowly changing 

features) sEMG signal is recorded during a constant force isometric contraction for a total time T.  

This long interval is divided into N epochs (epoch 1 to epoch N) of equal duration Tepoch.   

b) The power spectrum of the signal is estimated for each of these epochs and its mean frequency 

(MNF) is calculated and plotted versus time (red dots). A curve fitting  is performed and the slope of 

the curve (a straight line in this case) is the rate of change of MNF in time.  This slope, expressed in 

Hz/s or in % decrement with respect to the initial value, is taken as an index of myoelectric 

manifestation of muscle fatigue. 

https://www.robertomerletti.it/en/emg/material/teaching/
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contraction force remains constant and begin at the beginning of the contraction, when 

mechanical manifestations of muscle fatigue are not yet present (the muscle is fatiguing but 

still able to sustain the required force).  Other sEMG variables reflect fatigue. See the concept 

of “fatigue plot” in   https://www.robertomerletti.it/en/emg/material/teaching/module7. 

 

 

 

7. The cross-spectrum of two signals. 

 
The power spectrum (or “auto power”, Pxx) of a signal x(t) indicates the power contributed to 

the signal by each harmonic. If the signal is random the power spectrum is somewhat 

different from epoch to epoch and shows random fluctuations from epoch to epoch so that 

 

Fig. 15. Example of power spectrum of the sEMG of a biceps brachii during a sustained isometric 

constant force contraction sustained at 60% of the maximal voluntary contraction (MVC) for 90s. 

Power spectra are calculated over subsequent epochs of 5 s each. For clarity, only four spectra are 

depicted, at the beginning of the contraction, after 30 s, after 60 s and at the end of the contraction. 

The vertical hatching of each spectrum represents the harmonics which are at the same frequencies 

for all the spectra since the epochs have equal durations (5s). The centroid value of each spectrum 

(MNF, vertical thick dotted line)  progressively moves towards the lower frequency values 

demonstrating myoelectric manifestations of muscle fatigue (dashed black curve). The rate of 

change can be taken as an index of fatigue and can be expressed in Hz/s or in % decrement/s with 

respect to the initial value. 
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each harmonic has a mean value and a standard deviation. An estimate of the  “true” 

spectrum is obtained by averaging many spectra obtained from many epochs, as indicated 

above. The power spectrum is the square of the magnitude of the Fourier transform of the 

signal, that is |Pxx(f)| = |X(f)|2 =|X(f)|٠ |X(f)|, where X(f) is the Fourier transform of x(t) and  

| | means magnitude . 

 

Consider now two  stationary signals x(t) and y(t) having Fourier transforms X(f) and Y(f) 

computed over the same epoch duration  T and therefore having harmonics at the same 

frequencies  0 Hz, 1/T, Hz  2/T Hz, 3/T Hz etc. We may be interested in finding out if these 

signals have something in common. In this case their power spectra, computed on the same 

sequence of epochs, would have the amplitude of some of their harmonics fluctuating in a 

similar way, that is in a “correlated manner” going up and down together. This may mean that 

the two signals are (at least in part) due to a common source or that one in influencing the 

other. This fact may be of great interest in neurophysiology and is described in a quantitative 

manner by the “cross-spectral power” or “ cross-spectrum” of the two signals. The magnitude 

of this cross-spectrum is given by |Pxy(f)| = |X(f)|٠|Y(f)|  and shows the harmonics of the two 

signals that carry “coherent” information.  A version of  |Pxy(f)| “normalized” with respect  

to the power spectra of the two signals  is |Pxy(f)| 2/ (Pxx(f)٠  Pxx(f) and is called the 

“coherence function” between the  two signals. This function is comprised between 0 and 1 

(or 0 % and 100 %) and quantitatively indicates the “commonality” between two signals.  

 

Further discussion about these issues exceeds the purpose of this note but a more detailed 

explanation may be found in: 

https://psyarxiv.com/mj75a/ 

https://math.stackexchange.com/questions/1002/fourier-transform-for-dummies 

https://www.medizin.uni-muenster.de/fileadmin/einrichtung/sfbtrr58/downloads/ 

PhD_Students/mathlab-for-neuroscientists.pdf 

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem  and  

https://www.youtube.com/watch?v=FcXZ28BX-xE 

 

Additional material can be found in the book : 

Afshin Samani, An introduction to signal processing for non-engineers. 2020, CRC Press, 

Taylor an Francic Group (CRC Press), ISBN: 13:978-0-367-20755-7 

 

https://psyarxiv.com/mj75a/
https://math.stackexchange.com/questions/1002/fourier-transform-for-dummies
https://www.medizin.uni-muenster.de/fileadmin/einrichtung/sfbtrr58/downloads/
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

